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A B S T R A C T

Stand-alone photovoltaic systems provide a potentially sustainable option for rural electrification, but the design
and management of these systems is a challenge. Here we examine the ability of dynamic (real-time) pricing in
off-grid systems to improve the durability of the batteries used to store power. In a randomized controlled trial
with a pre-paid solar micro-grid in rural India, we found that dynamic pricing did not improve technical per-
formance or customer satisfaction. The best explanation for the null finding is that, for various reasons,
households minimized their power consumption and there was thus little need for demand management. These
findings suggest that the low demand for power is a key challenge for the profitability of pre-paid off-grid
systems.

1. Introduction

More than one billion people worldwide still lack access to elec-
tricity at home [10]. As a result, basic energy services such as house-
hold lighting or mobile charging in developing countries are often
based on expensive and polluting alternatives such as kerosene or fuel
generators. In these countries, stand-alone photovoltaic systems pro-
vide a potentially sustainable option for rural electrification [2]. The
design and management of these systems, however, presents consider-
able challenges. A typical village solar power system consists of PV
panels, a battery, DC-grid, and balance-of-system components. The
battery is often technically and economically the most critical compo-
nent, and may limit the availability of electricity delivered and lifetime
of the whole system. Thus, techno-economic measures to protect bat-
teries could play an important role in improving the performance and
long-term viability of off-grid systems.

Here we investigate whether demand side management is effective
in protecting the battery from deep discharge and thus improve the
performance of solar photovoltaic systems. In a randomized controlled
trial, we applied dynamic pricing to seven solar micro-grids [1,6,7,11]
in rural Uttar Pradesh, India. By randomizing the presence or absence of
dynamic pricing over a full year, we assessed whether the demand re-
sponse to variation in the price of electricity could be used to improve
the performance of the system. Under dynamic pricing (treatment
condition), when the battery voltage decreased, the price of electricity

went up to reduce consumption. Under static pricing (control condi-
tion), the price of electricity remained constant regardless of the battery
voltage. This pattern, we hypothesized, would shift electricity con-
sumption over time in a way that would improve battery life. The
possible benefits of dynamic pricing would include longer battery life,
more efficient use of electricity generation capacity, less need to invest
in expensive oversized systems to deal with peak demand, and a more
reliable supply of power to rural households. These benefits would, in
turn, enhance consumer experience with stand-alone photovoltaic sys-
tems.

We did not find evidence for the effectiveness of dynamic pricing.
Both the technical performance and the consumers' perceptions re-
mained failed to improve under dynamic pricing, and there was even
suggestive evidence that some consumers found the price changes ir-
ritating. The best explanation for this null result is that households
minimized their power consumption and thus there was no need for
demand management. As detailed below, households were very con-
servative in their power use, and technical problems further decreased
their ability to benefit from electricity access. These results suggest that
pay-as-you-go models may face challenges in generating enough rev-
enue, as households respond to these models by being frugal with
power use. Our experimental results show that in the absence of suffi-
cient power demand, the benefits of dynamic pricing can be limited.
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2. Dynamic pricing in rural off-grid electrification

Stand-alone photovoltaics typically consist of solar PV modules, a
battery unit for energy storage, and necessary balance of system com-
ponents to enable a functioning system. With declining costs of solar
panels, the cost of the battery plays an increasing role of the total costs,
also its life-time is much shorter than that of the PV panels. Therefore,
to avoid oversizing, drainage of battery, and reduced lifetime, demand
side management (DSM) could play an important role in off-grid sys-
tems.

When the price of electricity depends on the battery status under
dynamic pricing, households have incentives to reduce their con-
sumption when the battery discharge approaches potentially harmful
levels. In practice, households have incentives to avoid high prices at
night, when (i) the demand for electricity in the habitation is high
because members of different households are at home and need lighting
and (ii) the sun is not shining, so that the battery must discharge. If
dynamic pricing prevents deep discharge and encourages households to
use electricity when the sun is shining, then the likelihood of blackouts,
brownouts, and voltage fluctuation should decrease. Avoiding dis-
charges also protects the battery from degradation. Unfortunately, the
benefits of dynamic pricing for off-grid solar systems have not been
estimated in previous studies, perhaps due to factors such as the small
power quantities involved per system and full power autonomy of such
systems. The control of off-grid solar systems typically just concerns the
battery management, whereas the consumers are not included in the
power management.

Previous studies on consumers in electricity markets of in-
dustrialized countries indicate that dynamic pricing of retail electricity
can lead to major gains [4,12], whereas the question would a consumer
adopt dynamic pricing in practice and change behavior contributing to
power consumption flexibility remains somewhat open [3]. Active
consumer participation has been recognized as a critical question for
future demand response [9]. Faruqui and Sergici [8] analyzed 15 recent
pilots and full-scale implementations of dynamic pricing of electricity
and found conclusive evidence that households respond to higher prices
by lowering usage. However, the magnitude of price response depends
on several factors, such as the magnitude of the price increase and the
consumer-technology communication interface.

3. Data and methods

In our experiment, we installed seven solar microgrids in seven
habitations in the Unnao district of the state of Uttar Pradesh in India.
All households were non-electrified before and during the study period
(52 weeks), except for the use of the solar microgrid. The solar mi-
crogrids in our intervention were low-voltage direct current (DC) dis-
tribution grids delivering power to 5–7 households each. Customers
could use small electronic appliances with a maximum instantaneous
peak load of 30W. In practice, households were able to use three LED
lights, a fan, and a socket for charging mobile phones and small ap-
pliances. Batteries were used to store solar power for use at night, and
the battery cost was approximately 10–15% of total system cost. The
batteries were sized such that they could power households' maximal
use – lights, mobile charging, and fan – for 12.5 h and lights only for
22.5 h even without any insolation. The most important seasons for
battery use and risk of discharge were the monsoon and the
December–January fog. See data and methods appendix for full system
details.

The treatment was randomly assigned on a weekly basis at the ha-
bitation level, so that each habitation was in the control and treatment
condition at different times over the study period. All households
within a habitation were in the same condition in any given week. In
the static pricing mode (control), the price of electricity was fixed and
did not vary over time. In the dynamic pricing mode (treatment), the
price varied depending on the status of the battery. When the voltage of

the battery descended below or ascended over a particular limit, the
central power station sent a signal to the energy meters in the house-
holds to change the price of electricity. This system encouraged
households to use more (less) electricity when the battery charge was
high (low). Overall, the treatment assignment was successful. Based on
a comparison of the price recorded on the central charging station data
and the randomization scheme, 93.5% of the data collected through the
central charging station at each habitation showed the correct pricing.
Deviations were caused by human (e.g., accidentally setting the in-
correct pricing condition) and technical errors (e.g., energy monitors
not responding to the enumerators' instructions). When dynamic pri-
cing was applied, the price was low 88% of the time and high only 3%
of the time. This imbalance indicates that the households were very
conservative with electricity use.

To assess the value of dynamic pricing, we test the following hy-
potheses:

1. Efficiency: Relative to the static mode, in dynamic mode house-
holds consume less electricity.

2. Performance: Relative to the static mode, in dynamic mode
households experience fewer technical problems.

3. Customer Experience: Relative to the static mode, in dynamic
mode households improve customer satisfaction.

4. Battery Protection: Relative to the static mode, in dynamic mode
the self-consumption index (see data and methods) is higher.

We report results from linear regression models on the outcomes
discussed above. The statistical modeling is used to derive estimates of
the causal impact of dynamic pricing from the experimental data. The
estimation equation can be written as:

= + + +Y α β T ε ,ijt i t jt ijt (1)

where i indexes households, j habitations, and t weeks. Y is the outcome
variable, T is the treatment indicator (dynamic pricing), α and β are
fixed effects, and ε is the error term. The unit of analysis is a household-
week, that is, each row of the data consists of variable values for a
specific household during one week over the study period. All regres-
sions include household and week fixed effects, meaning that we esti-
mate the effect of changes in treatment status (static versus dynamic
pricing) on changes in outcomes (e.g., electricity consumption) within a
household while controlling for common temporal trends over the
study period. Standard errors are clustered by habitation-week, the
level of treatment assignment, to account for correlation across
households' treatment status within any given habitation at a given
time.

The independent variable of interest is the assignment to dynamic
pricing. We estimate intent-to-treat (ITT) effects, so that the focus is on
the effects of the intended (i.e., randomized) pricing mode. This is
conservative estimate of the treatment effect because we may some-
times fail to achieve the intended pricing mode because of technical
issues or human error. In practice, however, given the very high asso-
ciation (0.935) between assignment and realization of treatment, this
specification choice is innocuous. In Supporting Information (SI), Table
SI S1 shows balance statistics, summarizing the information collected
on a weekly basis into the control group (static pricing) and the treat-
ment group (dynamic pricing). As the table shows, the randomization
across households was successful, with only two of the 23 covariates
having a statistically significant difference. Outcomes are summarized
by treatment condition in SI Table S2 and household characteristics
collected in the baseline surveys prior to the introduction of the dy-
namic pricing scheme are described in SI Table S3.

The dependent variables are defined as follows:

• Table 1: weekly actual use of electricity in watt-hours (energy me-
ters); the number of hours households used electricity for lighting,
fans, and mobile phone charging (surveys).
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• Table 2: number of problems households had with using light bulbs,
fans, and mobile phones each week (surveys).

• Table 3: households' perception of electricity price (1 very expensive
to 5 very cheap), difficult to use the pre-paid system (1 very difficult
to 5 very easy), and satisfaction with the provider Boond's service (1
very unsatisfied to 5 very satisfied).

• Table 4: daily self-consumption index (0–1, with higher values in-
dicating more direct use of sunlight), calculated following Lu-
thander et al. [13].

4. Effects of dynamic pricing

The effects of dynamic pricing on electricity consumption are re-
ported in Table 1. In Models 1–2, the outcome variable is the total
consumption of electricity in watt-hours. Models 2–8, in turn, show the
result for self-reported use of electricity for lighting, fan, and mobile
charging in hours. Overall, the effect of dynamic pricing is relatively
weak. Variation in the price of electricity seems to have a very small
negative effect of about one-tenth of an hour on self-reported lighting
hours per week, but for all other outcomes the confidence bounds are
wide relative to the small coefficients.

The result on electricity consumption in watt-hours is further illustrated in
Fig. 1. The figure shows that there is considerable seasonal variation in watt-
hour consumption, with consumption peaking in the hot season (April–May),
but there is no clear pattern of difference between households in dynamic
versus static pricing in any given week. This is consistent with the weak
results from the regression analysis above on watt-hour consumption.

Table 2, in turn, shows the results for self-reported technical pro-
blems. The dependent variables are counts of self-reported problems
per week. Interestingly, here we see modest evidence of the dynamic

Table 1
Effect of dynamic pricing on electricity consumption and use. The unit of analysis is a household-week. The models are linear regressions and the dependent variables
are the weekly actual use of electricity (watt-hours) and the number of hours during which households used electricity for lighting, fans, and mobile phone charging.
FE refers to inclusion (yes) or exclusion (no) of fixed effects.

Watt-hour Light hrs Fan hrs Mobile hrs

(1) (2) (3) (4) (5) (6) (7) (8)

Dynamic Pricing (ITT) −6.017 0.742 −0.096∗∗ −0.081∗∗ 0.003 0.000 −0.009 −0.013
(4.754) (4.051) (0.044) (0.037) (0.022) (0.017) (0.015) (0.012)

Habitation FE No Yes No Yes No Yes No Yes
Week FE No Yes No Yes No Yes No Yes

Adjusted R2 0.001 0.085 0.003 0.093 −0.000 0.153 −0.000 0.113
Observations 1950 1950 2232 2232 2232 2232 2232 2232
Mean of Dep Var 107.212 107.212 2.452 2.452 0.098 0.098 0.156 0.156

Standard errors clustered by habitation-week in parentheses.
<∗p 0.10.
<∗∗p 0.05.
<∗∗∗p 0.01.

Table 2
Effect of dynamic pricing on self-reported technical problems. The unit of
analysis is a household-week. The models are linear regressions and the de-
pendent variables are the number of problems households had charging light
bulbs, fans, and mobile phones each week.

Light Problems Fan Problems Mobile Problems

(1) (2) (3) (4) (5) (6)

Dynamic Pricing
(ITT)

0.438∗ 0.544∗∗∗ 0.077 0.059 0.046 0.058∗

(0.246) (0.196) (0.057) (0.046) (0.032) (0.031)
Habitation FE No Yes No Yes No Yes
Week FE No Yes No Yes No Yes

Adjusted R2 0.004 0.215 0.001 0.136 0.002 0.050
Observations 2232 2232 2232 2232 2232 2232
Mean of Dep Var 1.302 1.302 0.151 0.151 0.057 0.057

Standard errors clustered by habitation-week in parentheses.
<∗p 0.10, <∗∗p 0.05, <∗∗∗p 0.01.

Table 3
Effect of dynamic pricing on subjective satisfaction. The unit of analysis is a
household-week. The models are linear regressions and the dependent variables
are households' perception of electricity price (1 very expensive to 5 very
cheap), difficult to use the pre-paid system (1 very difficult to 5 very easy), and
satisfaction with the provider Boond's service (1 very unsatisfied to 5 very sa-
tisfied).

Electricity Price Difficulty Satisfaction

(1) (2) (3) (4) (5) (6)

Dynamic Pricing
(ITT)

−0.093∗ −0.054 −0.040 −0.023 −0.030 −0.092
(0.050) (0.043) (0.039) (0.027) (0.102) (0.084)

Habitation FE No Yes No Yes No Yes
Week FE No Yes No Yes No Yes

Adjusted R2 0.002 0.085 0.000 0.166 −0.000 0.226
Observations 2231 2231 2232 2232 2232 2232
Mean of Dep Var 2.993 2.993 4.591 4.591 4.239 4.239

Standard errors clustered by habitation-week in parentheses.
<∗p 0.10, <p 0.05** , <p 0.01*** .

Table 4
Effect of dynamic pricing on the self-consumption index. The unit of analysis is
a habitation-week. The models are linear regressions and the dependent vari-
able is the self-consumption index (0–1).

SC -24h SC

(1) (2) (3) (4)

Dynamic Pricing (ITT) −0.021 −0.028∗∗ −0.009 −0.007
(0.016) (0.013) (0.015) (0.010)

Habitation FE No Yes No Yes
Week FE No Yes No Yes

Adjusted R2 0.003 0.405 −0.002 0.451
Observations 270 270 270 270
Mean of Dep Var 0.394 0.394 0.137 0.137
St. Dev of Dep Var 0.131 0.131 0.115 0.115
Min of Dep Var 0.099 0.099 0.001 0.001
Max of Dep Var 1.000 1.000 1.172 1.172

Standard errors clustered by habitation-week in parentheses.
<∗p 0.10, <p 0.05** , <p 0.01*** .
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pricing worsening self-reported problems with lighting. In the dynamic
pricing mode, the weekly count of problems with lighting increases by
0.4–0.5 relatively to the static pricing mode. The coefficients for the
other problems, on the other hand, are small and statistically insignif-
icant with one exception (model 4, mobile problems). These results
suggest that under dynamic pricing, there were more problems with
power availability and power quality, and the respondents perceived
these when lights went out.

Next, we turn our attention to customer satisfaction. The results are
shown in Models 1–6 of Table 3. The outcome variable is subjective
satisfaction on a 1–5 scale, with higher values indicating more sa-
tisfaction. Again, we see that dynamic pricing has a negative effect on
satisfaction with the electricity price. It seems that the variation in the
price disturbs the households even though the intention is to protect the
system from damage and improve its durability. Perceived difficulty of
use and the quality of Boond's service, on the other hand, do not
change.

Finally, Table 4 shows how the self-consumption index – energy
consumed directly from the sun without battery storage (see data and
methods for details) – changes with dynamic pricing. The unit of ana-
lysis is a habitation-week because self-consumption is defined for the
central controlled at the habitation level. Models 1–2 show the results
for self consumption over each 24-h period, so that night times without
any power consumption are considered in the calculation; models 3–4
focus on times when power is actually being produced. Here we see
little evidence of changes: dynamic pricing seems not to have increased
the self-consumption index at all, with slightly negative coefficients
that are statistically indistinguishable from zero, except for one model.
Most importantly, the coefficients are small and statistically insignif-
icant in models 3–4 that exclude times when power is not produced.

Overall, the results offer little evidence for the benefits of dynamic
pricing. Neither technical performance nor consumer satisfaction im-
proved. We consider the best explanation for this null finding to be the
minimal demand of power among the consumers. With a weekly watt-
hour power use of only 110 under dynamic pricing (104 under static
pricing), the households only used minimal amounts of electricity for
lighting and mobile charging, with minimal use of the fan: the average
daily hours of fan use was only 0.097 h among the households under
study. Besides the relatively high cost of running a fan, this lack of use
could also reflect problems with the fans that Boond supplied, as we
sometimes observed faulty products and difficulties with connecting the
fans to the electricity sockets. In such circumstances, power demand
was minimal most of the time. Even under dynamic pricing, the price of
electricity remained in the low mode 88% of the time, as noted above. If

demand-side management had been an issue, we should have seen
frequent switches to medium and high prices.

Furthermore, power outages due to technical problems may have
curtailed energy use even further: while power outages were indis-
tinguishable between the static and dynamic pricing modes, the
number of minor interruptions or data transmission problems was
higher during dynamic pricing (SI Table S7). Although the minor in-
terruptions were not common enough to explain the low power con-
sumption, they may have amplified households' general unwillingness
to pay for relatively large loads of power to operate the fan. Finally, we
found some qualitative evidence that households were irritated when
the price increased under dynamic pricing, as households complained
in the interviews about the price increases. Household heads told us
that they found the high prices irritating, a problem that may have been
amplified by the fact that the high price was sometimes followed by a
power outage, as per the design of the dynamic pricing system.

5. Conclusion

The above experimental results underscore the limitations of dy-
namic pricing as a method of demand-side management in off-grid
systems. In our study, dynamic pricing did not protect the battery of the
system from deep discharge because electricity demand in general was
quite low. Similar to earlier research [7], households used the pre-paid
system to minimize their power consumption, mostly using electricity
for lighting and mobile charging. Although the results are less robust,
we also found some evidence that the dynamic pricing method caused
problems with electricity flow and pricing data, resulting in irritation
among households. Most of these problems were relatively minor in-
terruptions or data transmission problems, however, as actual outages
did not increase in the dynamic condition based on our technical data
(SI Table S7).

To be sure, our research design has its limitations. We have ran-
domized dynamic pricing by week, which is not a realistic pricing
strategy. By allowing the price to vary from week to week, we may have
contributed to some confusion among the subjects, as they may have
anchored their expectations to the lower prices, which are typical of the
local off-grid market. Studies of different dynamic pricing strategies in
larger samples with commercially viable pricing strategies are, there-
fore, a natural avenue for future research. Another notable limitation is
our focus on relatively small pico-grids that only offer lighting and air
circulation. In larger systems that power cooling and productive uses,
dynamic pricing might prove more useful, as the peak load would be
much larger.

The key implication of these findings for the growing off-grid in-
dustry is the importance – and difficulty – of estimating power demand
in advance. When the system has a large capacity relative to demand,
dynamic pricing and other sophisticated demand-side management are
costly but not necessary. In our study, the low demand for power meant
that even under dynamic pricing the price of power rarely increased
beyond the baseline level. Dynamic pricing might have been more
useful if households had been willing and able to pay for the use of
electric fans, televisions, and other technologies that consume much
more energy than lighting and mobile charging. The primary challenge
for off-grid entrepreneurs, then, remains identifying and creating de-
mand for energy. Only under a scenario of relatively high power de-
mand will techniques such as dynamic pricing become relevant.

5.1. Data and methods appendix

This section offers additional detail on the data and methods used. A
pre-analysis plan for the data analysis is available at http://egap.org/
registration/1662. By specifying the estimation strategy in advance, the
pre-analysis plan reduces the risk of bias from multiple comparisons
and selective reporting of findings [5].

Fig. 1. Average weekly watt-hours by treatment. The red dots represent the
average weekly watt-hours for households under static pricing in each week,
and the blue dots represent the same of households under the dynamic pricing
scheme.
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5.2. System specification

The solar microgrids were assembled and installed by Boond
Engineering and Development, an Indian energy service company [14].
The systems were sized based on previous experience with similar
systems in the Unnao area under the assumption that households would
use electricity for mobile charging, lighting, and fans.

The power is supplied by two 100W solar PV panels that charges a
120 Ah lead-acid battery bank. The energy is fed to the grid by a central
charging station – at the habitation level – with a 24 V distribution
voltage. Direct current (DC) distribution had been chosen for its energy
efficiency: conversion to AC from the direct current PV power is thus
avoided. Solar panels are mounted to an optimal angle of 23°. Boond
technicians control the status of the battery bank and take care of the
maintenance of the technical equipment. The local system operators are
advised to clean the PV panels weekly.

The central charging station senses the voltage of the battery bank
and sends the price information to the households via a separate serial
data cable. The minimum voltage values for different energy prices
were chosen as to protect the battery from deep discharge. High price:
21.6 V (21.6. V); Medium price: 23.5 (23 V); Low price: 24.5 V (24 V).
In brackets are the values if the solar charging is zero. After the cut-off
at 21.6 V, the central charging station feeds power again to the grid
only when the voltage once exceeds 25.6 V.

The households are equipped with three LED light bulbs, a fan, and
a socket for using small personal electronic appliances. Households can
monitor their energy consumption in the energy meters. The customers
have 24/7 power availability but the maximum power consumption at
any given time is 30W. The households pay for electricity according to
the experimental specifications. In practice, a household buys credit
from the local system operator in advance (pay as you go) and uploads
them into the energy meter within the household. This is a pre-paid
system that allows households to control their electricity consumption.
When the credit runs out, power is disconnected unless the customer
purchases more.

Technical details of the system components:

• PV panels: Two Alpex Solar ‘Alpex 12100 100W’ panels. Application
class: A. Open-circuit voltage 21 V, short-circuit current 6.15 A.

• Battery bank: Two Tubular type lead-acid batteries Artheon Black
EON 60 T ‘Premium Quality Solar Battery’. 12 V, 60 Ah each.

• Central charging station: Manufacturer EmSys Electronics. Output:
24 V DC. Short circuit protection, over load protection, low-voltage
cut-off and high voltage cut-off. Data logging.

• Energy meter: Manufacturer: EmSys Electronics. Input 24 V DC.
Output 12 V DC.

• Communication: Serial communication and a separate data cable,
baud rate 9600 bps (RS-485).

The system is illustrated in Fig. 2 and an actual household energy
meter shown in Fig. 3.

5.3. Treatment variable

The treatment variable was randomly assigned at the habitation-
week level. The control condition was static pricing: the price of elec-
tricity was set at INR 10 per 100W-hours.

The treatment condition was dynamic pricing: in this condition, the
price varied depending on the battery condition. When the voltage of
the battery descended below or ascended over a particular limit, the
central power station sent a signal to the energy meters in the house-
holds to change the price of electricity. In the low price mode (green
light), the price is INR 10 per 100W-hours. In the medium price mode
(yellow light), the price is INR 15 per 100W-hours. In the high price
mode (red light), the price is INR 20 per 100W-hours. These prices
were chosen by Boond in collaboration with the research team. INR
10–15 is the standard price range used by Boond, whereas INR 20 re-
flects a sufficient increase to deter excessive power consumption
without being so high as to make electricity prohibitively expensive. In
practice, the prices appear to have been low enough to encourage rapid

Fig. 2. Design of the smart energy meter and the solar pico-grid.
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decreases in kerosene use: in the baseline the households used 2.5 L of
kerosene on average, but this quantity decreased to 1.24 L in the end-
line.

The households, including both household heads and other adult
members, were given detailed instructions on how to interpret the
lights. During the first few months of the experiment, the enumerators
repeated the instructions multiple times and ensured that the house-
holds understand the relationship between the color of the light and the
cost of electricity.

5.4. Calculation of the daily self-consumption index

In the pre-analysis plan, this dependent variable was called ‘solar
fraction.’ Here we use the more approriate term of self-consumption
index. Self-consumption ϕSC is an index for understanding how large
share of the power produced on-site is being consumed instantaneously.
The value of ϕSC should be between 0 and 1. The larger the value ϕSC,
the better is the alignment of production and consumption: if ϕSC =1,
all produced energy goes directly to use. In this experiment, higher ϕSC
would reduce the need for the battery bank as the reserve and thus the
stress for its use. The self-consumption index ϕSC is formally expressed
as

∫

∫
=ϕ

M t dt

P t dt

( )

( )
,SC

t
t

t
t

1
2

1
2

(2)

where P t( ) is the generation profile and M t( ) is the instantly over-
lapping part of the generation and load profiles. When L t( ) is the in-
stantaneous power consumption (load) and S t( ) the power of the sto-
rage unit, = +M t min L t P t S t( ) { ( ), ( ) ( )}. When the storage is being
charged, <S t( ) 0 and when discharged, >S t( ) 0. In this experiment,
the power produced by the PV panels is =P t V t I t( ) ( ) ( )PV ch , where
V t( )PV is the PV panel voltage and I t( )ch is the charging current. The
total power demand by the grid (sum including the power consumed by
the villagers' loads and any power losses) is =L t V I t( ) ( )d load , whereVd is
the distribution voltage 24 V and I t( )load is the load current from the
central charging station to the grid. The power of the battery bank is

= −S t V t I t I t( ) ( )( ( ) ( ))b ch load . Values of V t( )PV , V t( )b , I t( )load and I t( )ch
are measured at the habitation-level central charging stations every
5min. Self consumption is calculated for each measurement day at the
habitation level. The integration limits t1 and t2 are chosen daily to cover
only the daytime hours when there was PV production. In Table 4 the
indices are calculated also for all the measurement day (SC h24 ), i. e. also
when =V 0PV . Self consumption is not to be mixed with self-sufficiency
index (often called as solar fraction) which is the degree to which the
on-site generation is sufficient to fulfil the complete energy need. In this
experiment, self-sufficiency index would always approach one since
there is only one energy source (solar).

5.5. Data collection

The data was collected between January 2016 and January 2017,
over a period of 52 weeks. The data collection was based on technical
measurements from the habitation-level and household-level energy
meters. These technical devices provided us with the information for
the electricity price and consumption over 10-min intervals, along with
the necessary voltage and current values from the central charging
station over 5-min intervals.

The survey data collection was done by two enumerators from
Morsel Research & Development, a Lucknow-based survey company
with extensive experience in social science research. Besides 30-min
baseline and endline surveys, the enumerators were responsible for
weekly surveys of all participating households. They were also re-
sponsible for downloading the technical data from the energy meters
and central charging stations. The data collection was conducted after
the systems had been designed, and the baseline data was not used to
inform the design.

The IRB of record is Columbia University, protocol IRB-AAAQ1014.

5.6. Missing data

In general, missing data is not a major problem because (i) the
randomization ensures that missingness is not correlated with the
treatment assignment and (ii) overall, little data was lost, so that

Fig. 3. A household energy meter, with
electricity price set to the lowest level. The
three lights (green, yellow, red) in the
upper-right corner indicate the current
electricity price. The lights in the lower-
right corner, in turn, indicate whether the
household needs to recharge the account
(‘currently low’) or if the system has low
memory (‘memory low’) and data needs to
be downloaded.
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statistical power is not under threat.
In total, 43 households from 7 habitations in the Unnao district

participated in the experiment. The expected number of household-
weeks was 2236 and the number of habitation-weeks was 364. The
weekly surveys had only 4–5 missing household-week observations;
technical watt-hour data was lost for 13% of household weeks. At the
habitation-week level, 26% of the self-consumption data was lost.

Missingness of technical data can also be assessed at the data point
level (10-min interval of recording for households; 5-min interval for
habitation-level central charging stations). Here, 14% of data points at
the household level were missing and 19% at the habitation level.

One customer in habitation 2 was removed by Boond because he
bypassed the meter, so 28 weekly observations of wattage for that
household are missing. Due to technical failures of the habitation-level
central charging station, there are some missing central charging sta-
tion observations (3–30%) from different habitations. The central
charging station data of habitation 6 is missing for weeks 40–52 and
partly corrupt for week 31 due to technical malfunctioning. The central
charging station data of habitation 5 is missing for weeks 21–25. In
habitation 2, data is missing for weeks 1–8 and 21–24 for an unknown,
most probably technical, reason. In habitation 7, the central charging
station data was lost for weeks 26–34, possibly due to human error.
There is a possibility that some of the data loss issues are results of
human error in manual data export and delivery. Throughout the study
period, technical problems resulted in intermittent, infrequent data
missingness among all households.

5.7. Statistical methods

For most of the analysis, the unit of the analysis is the household-
week. In Table 4, it is the habitation-week. We estimate linear regres-
sions with standard errors clustered by the habitation-week (level of
treatment assignment and realization). We estimate the linear models
with household and week fixed effects. Following the public pre-ana-
lysis plan, we need not include any control variables in the main spe-
cifications because the treatment is randomized; for models with con-
trol variables to enhance precision, see SI Tables S4–S6 (Table 4 is not
replicated there because habitation fixed effects subsume all cross-
sectional variation).
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